NKC164E

高导电性铜镍硅合金

序言

近年,随着连接器的小型化,为了抑制通电时发热,高导电铜合金的需求增加。为了对应市场需求,敝司开发了这款高导电性、弹性、折弯加工性以及耐热性都很好的高导电铜镍硅合金"NKC164E"。车载、家电、信息机器等各种连接器广泛使用,特别适用要求大电流通电的产品。另外此材料可提供回流焊镀锡材。

请参考本技术资料,了解高性能铜合金 NKC164E 的特征。

※本技术资料记载的数值为代表值。

特征

- (1) 55%IACS 的导电率和 600Mpa 的强度
- (2) 优异的折弯加工性,能对应紧密接触折弯和 Box-Bending
- (3) 高温条件下也具有优异的耐应力缓和特性

化学组成(wt%)

	Cu	Ni	Si
成份	残	1. 6	0. 35

物理特性

导电率	55	%IACS (@20°C)	
电阻率	30	nΩ ·m (@20°C)	
热传导率	240	W/ (m· K)	
热膨胀系数	17.7	$\rm X10^{-6}$ /K (20 to 300°C)	
弹性系数	120	GPa	
密度	8. 89	g/cm3	

机械性能

质别	抗拉强度(Mpa)	0.2%屈服强度 (MPa)	延伸率(%)	维氏硬度
Н	630	610	12	200
	(590–680)	(540-680)	(min 5)	(160-220)
ЕН	690	670	5	210
	(620–760)	(600-740)	(min 2)	(170-230)
日本车载规 格 JC300	365–720	300-700	≥ 2	90-230

上段:代表值

下段: 规格范围

折弯加工性

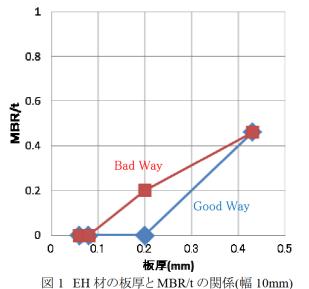

通过 W 折弯测试(测试材料形状: 板厚× 10^{ll} × $60mm^{l}$)对不同的折弯半径进行了折弯测试,不出现裂纹的状态下,最小折弯半径除以板厚 (MBR/t=Minimum Bend Radius/Thickness) 得出的结论如表 4。EH 材板厚和 MBR/t 的关系如图 1 所示。

图 2-1 是 H 材的 90° W 折弯(R=0)后折弯部表面以及断面。另外图 2-2 是紧密接触折弯后的折弯部表面以及断面。W 折弯、紧密接触折弯,折弯部均没有产生裂纹,因此可以看出,NKC164E 折弯性能优异,是一款能够对应 Box-Bending 等折弯要求高的材料。

表 4 NKC164E の曲げ加工性

X : 1012 010 12 1 11 10 10 10 10 10 10 10 10 10 10 10 1				
	MBR / t			
質別	Good way	Bad way		
Н	0	0		
EH	0	0.2		

※板厚 0.2mm×幅 10mm

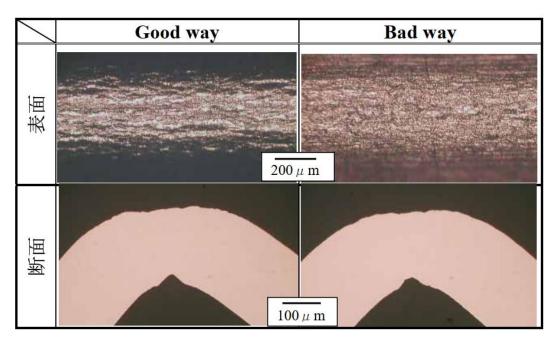


图 2-1 90°W 折弯测试 (R=0) 后折弯部表面以及断面的光学显微镜照片 (质别 H, 板厚: 0.20mm, 测试片宽: 10mm)

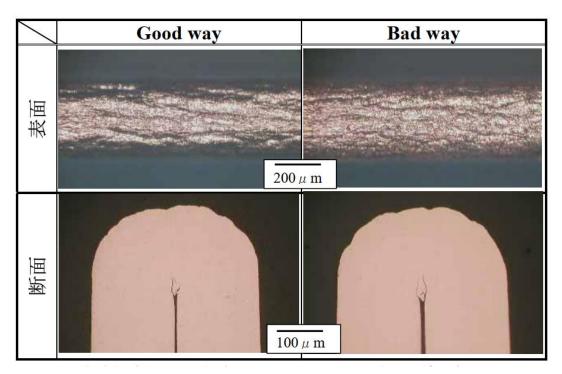


图 2-2 紧密接触折弯测试后的折弯部表面以及断面的光学显微镜照片 (质别 H, 板厚: 0.2mm, 测试片宽度: 10mm)

耐应力缓和特性

耐应力缓和特性是判定产品是否能够长期维持高接触力的评价标准,图3是

NKC164E 与传统高导电性弹片材料(导电率: 60%IACS, 0.2%屈服强度: 530MPa)对比, 150°加热后的耐应力缓和特性, 1000h加热后还能维持 75%以上的初期应力, 这是此合金的一大优势。

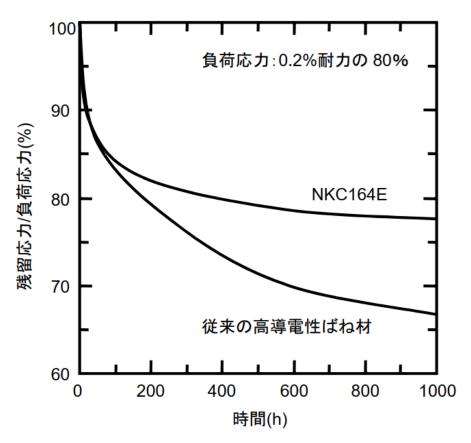


図3 NKC164E の応力緩和特性 (加熱温度 150℃)

应力一应变曲线

NKC164E的 S-S 曲线如图 4-1~4-2 所示。

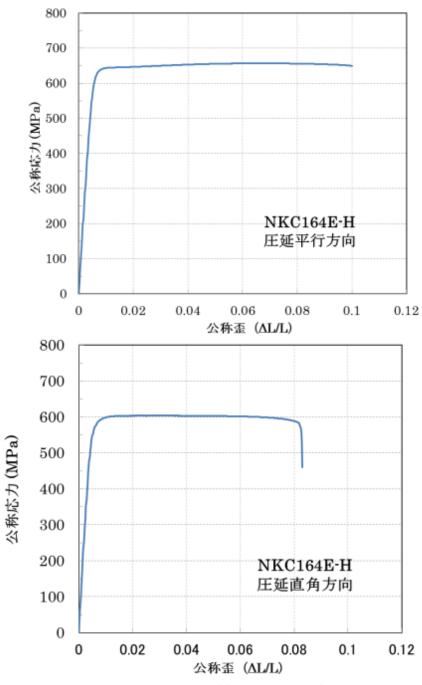


図 4-1 NKC164E-H 材の S-S カーブ

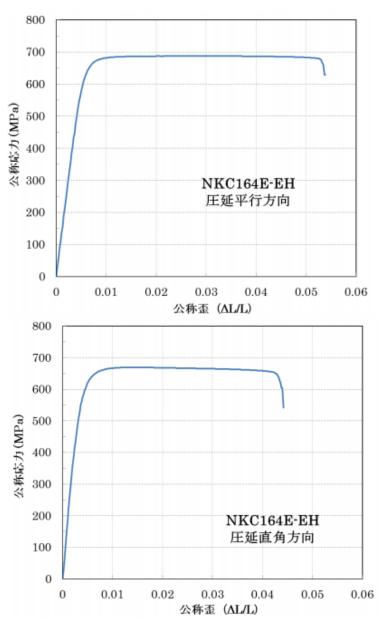


図 4-2 NKC164E-EH 材の S-S カーブ